%I
%S 0,10,102,120,201,210,1203,1302,2013,2031,2103,2130,3012,3021,3102,
%T 3120,12034,12043,20314,20413,21304,21403,30214,30412,31204,31402,
%U 34012,34120,40213,40312,41203,41302,43012,43120,120345,120543,203145,203154,204153
%N Numbers whose digits are a permutation of [0,...,n] and which contain the product of any two adjacent digits as a substring.
%C The subsequence A198298 corresponding to n=9 was suggested by E. Angelini (cf. link).
%C If we consider permutations of [1,...,n], the only solutions are { 1, 12, 21, 213, 312, 3412, 4312, 71532486 }.
%C There are 285 terms.
%H Jason Kimberley, <a href="/A203569/b203569.txt">Table of n, a(n) for n = 1..285</a> (complete sequence)
%H Eric Angelini, <a href="http://www.cetteadressecomportecinquantesignes.com/DixChiffres.htm">10 different digits, 9 products</a>
%H E. Angelini, <a href="/A198298/a198298.pdf">10 different digits, 9 products</a> [Cached copy, with permission]
%H E. Angelini, <a href="http://list.seqfan.eu/pipermail/seqfan/2012January/008824.html">10 different digits, 9 products</a>, Posting to Seqfan List, Jan 03 2012
%e The term 12034 is in the sequence since 1*2=2, 2*0=0, 0*3=0 and 3*4=12 are all substrings of 12034. This is the least nontrivial term in the sense that it contains two adjacent digits > 1, which is the case for all solutions > 42000.
%o (PARI) n_digit_terms(n)={ my(a=[],p=vector(n,i,10^(ni))~,t);for(i=(n1)!,n!1, is_A203565(t=numtoperm(n,i)%n*p) & a=concat(a,t));vecsort(a)}
%Y Cf. A198298, A203566, A210013A210020.
%K nonn,base,fini,full
%O 1,2
%A _M. F. Hasler_, Jan 03 2012
