%I #11 Aug 01 2015 10:00:37
%S 1,28,943,32026,1087933,36957688,1255473451,42649139638,1448815274233,
%T 49217070184276,1671931570991143,56796456343514578,
%U 1929407584108504501,65543061403345638448,2226534680129643202723,75636636063004523254126,2569419091462024147437553
%N Indices of hexagonal numbers that are also decagonal
%C As n increases, this sequence is approximately geometric with common ratio (1+sqrt(2))^4=17+12*sqrt(2).
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (35, 35, 1).
%F G.f.: x(17*x2*x^2) / ((1x)*(134*x+x^2))
%F a(n) = 35*a(n1)35*a(n2)+a(n3)
%F a(n) = 34*a(n1)a(n2)8
%F a(n) = 1/16 *((3*sqrt(2)2)*(1+sqrt(2))^(4*n2) (3*sqrt(2)+2)*(1sqrt(2))^(4*n2)+4)
%F a(n) = ceiling(1/16 *(3*sqrt(2)2)*(1+sqrt(2))^(4*n2))
%e The second hexagonal number which is also decagonal is A000384(28)=1540. Hence a(2) = 28.
%t LinearRecurrence[{35, 35, 1}, {1, 28, 943}, 17]
%Y Cf. A203134, A203136, A000384, A001107.
%K nonn,easy
%O 1,2
%A _Ant King_, Dec 30 2011
