%I
%S 209,637,637,2005,2509,2005,6365,10195,10195,6365,19957,41617,53754,
%T 41617,19957,62393,167293,283870,283870,167293,62393,195261,672157,
%U 1467519,1941572,1467519,672157,195261,612041,2708439,7590348,12958109
%N T(n,k)=Number of (n+3)X(k+3) binary arrays with no more than one of any consecutive four bits set in any row or column
%C Table starts
%C .....209.......637.......2005.........6365.........19957...........62393
%C .....637......2509......10195........41617........167293..........672157
%C ....2005.....10195......53754.......283870.......1467519.........7590348
%C ....6365.....41617.....283870......1941572......12958109........86445746
%C ...19957....167293....1467519.....12958109.....111839021.......963362129
%C ...62393....672157....7590348.....86445746.....963362129.....10711347544
%C ..195261...2708439...39456394....579826944....8332395581....119515110620
%C ..612041..10930987..205613584...3901532872...72287603169...1337168329880
%C .1918365..44061099.1069115223..26198114119..626341851655..14945047693907
%C .6011045.177493297.5552489273.175675221993.5421105322467.166885634079461
%H R. H. Hardin, <a href="/A203048/b203048.txt">Table of n, a(n) for n = 1..180</a>
%e Some solutions for n=3 k=3
%e ..0..1..0..0..0..1....0..0..0..0..0..0....1..0..0..0..0..0....0..1..0..0..0..1
%e ..0..0..0..0..0..0....0..0..0..1..0..0....0..0..0..0..0..0....0..0..0..0..0..0
%e ..0..0..0..0..0..0....1..0..0..0..1..0....0..0..0..0..1..0....0..0..0..0..0..0
%e ..0..0..0..1..0..0....0..0..0..0..0..0....0..1..0..0..0..0....0..0..0..0..0..0
%e ..0..0..0..0..0..0....0..0..0..0..0..1....0..0..1..0..0..0....0..0..0..1..0..0
%e ..0..1..0..0..0..0....0..0..0..1..0..0....1..0..0..0..0..0....0..0..0..0..0..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ Dec 27 2011
|