login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of arrays of 4 integers in -n..n with sum zero and adjacent elements differing in absolute value.
1

%I #9 Jun 03 2018 07:57:50

%S 4,28,108,268,544,972,1576,2392,3456,4792,6436,8424,10780,13540,16740,

%T 20404,24568,29268,34528,40384,46872,54016,61852,70416,79732,89836,

%U 100764,112540,125200,138780,153304,168808,185328,202888,221524,241272

%N Number of arrays of 4 integers in -n..n with sum zero and adjacent elements differing in absolute value.

%C Row 2 of A202962.

%H R. H. Hardin, <a href="/A202964/b202964.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-1) -3*a(n-2) +2*a(n-3) -3*a(n-4) +3*a(n-5) -a(n-6).

%F Empirical g.f.: 4*x*(1 + 4*x + 9*x^2 + 5*x^3 + 5*x^4) / ((1 - x)^4*(1 + x + x^2)). - _Colin Barker_, Jun 03 2018

%e Some solutions for n=5:

%e .-4....1...-1....0...-1....0....0....0....3...-2...-2...-5....0...-4....1...-5

%e ..5...-4....2...-4....0...-3...-1...-2...-4...-1....5....4....3....1...-2....1

%e ..2....1...-5....3....3....2....3....4...-2....5...-2....0....2....4....4....4

%e .-3....2....4....1...-2....1...-2...-2....3...-2...-1....1...-5...-1...-3....0

%Y Cf. A202962.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 26 2011