%I
%S 194481,359970,695114,1360328,2631416,4958318,9044252,15949741,
%T 27226555,45087162,72615870,114028454,174987698,262982942,387782408,
%U 561967787,801561301,1126756210,1562762514,2140780404,2899114844,3884445518
%N Number of (n+3) X 9 binary arrays with consecutive windows of four bits considered as a binary number nondecreasing in every row and column.
%C Column 6 of A202939.
%H R. H. Hardin, <a href="/A202937/b202937.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/15120)*n^9 + (1/96)*n^8 + (235/504)*n^7 + (725/72)*n^6 + 125*n^5 + (276005/288)*n^4 + (13991149/3024)*n^3 + (1320845/72)*n^2 + (24830539/420)*n + 111295.
%F Conjectures from _Colin Barker_, Jun 03 2018: (Start)
%F G.f.: x*(194481  1584840*x + 5847059*x^2  12729882*x^3 + 17952876*x^4  16970274*x^5 + 10737942*x^6  4382257*x^7 + 1046214*x^8  111295*x^9) / (1  x)^10.
%F a(n) = 10*a(n1)  45*a(n2) + 120*a(n3)  210*a(n4) + 252*a(n5)  210*a(n6) + 120*a(n7)  45*a(n8) + 10*a(n9)  a(n10) for n>10.
%F (End)
%e Some solutions for n=1:
%e ..0..0..0..0..0..1..0..1..0....0..0..0..0..0..1..1..1..1
%e ..0..0..0..0..0..1..0..0..0....0..0..0..0..1..1..1..1..1
%e ..0..0..0..0..0..1..1..0..1....0..0..0..0..0..1..1..0..1
%e ..0..0..0..0..0..0..0..0..1....0..0..0..0..0..0..0..1..1
%Y Cf. A202939.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 26 2011
