Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jun 01 2018 10:35:22
%S 510,3150,18160,107510,629790,3704980,21758550,127872530,751278240,
%T 4414434310,25937520830,152401930300,895465610130,5261491036130,
%U 30914921038320,181646780968570,1067301604632450,6271142423909740
%N Number of (n+2) X 4 binary arrays avoiding patterns 001 and 000 in rows and columns.
%C Column 2 of A202601.
%H R. H. Hardin, <a href="/A202595/b202595.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 2*a(n-1) +22*a(n-2) +12*a(n-3) -43*a(n-4) -8*a(n-5) +18*a(n-6) -a(n-8).
%F Empirical g.f.: 10*x*(51 + 213*x + 64*x^2 - 423*x^3 - 62*x^4 + 179*x^5 - x^6 - 10*x^7) / (1 - 2*x - 22*x^2 - 12*x^3 + 43*x^4 + 8*x^5 - 18*x^6 + x^8). - _Colin Barker_, Jun 01 2018
%e Some solutions for n=3:
%e ..0..1..1..1....1..1..0..1....1..0..1..1....0..1..1..0....1..1..1..1
%e ..1..1..0..0....1..1..1..1....0..1..1..1....1..0..1..1....1..1..0..0
%e ..1..1..1..1....1..1..0..0....1..0..1..0....1..1..0..1....1..0..1..1
%e ..1..1..0..1....1..1..1..1....0..1..0..1....1..1..1..0....0..1..1..1
%e ..1..1..0..1....0..1..1..1....1..0..1..0....1..1..1..1....0..1..1..0
%Y Cf. A202601.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 21 2011