%I
%S 1000,1876,3362,5735,9338,14586,21972,32073,45556,63184,85822,114443,
%T 150134,194102,247680,312333,389664,481420,589498,715951,862994,
%U 1033010,1228556,1452369,1707372,1996680,2323606,2691667,3104590,3566318,4081016
%N Number of (n+2) X 5 binary arrays with consecutive windows of three bits considered as a binary number nondecreasing in every row and column.
%C Column 3 of A202461.
%H R. H. Hardin, <a href="/A202456/b202456.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/20)*n^5 + 2*n^4 + (275/12)*n^3 + 113*n^2 + (10351/30)*n + 517.
%F Conjectures from _Colin Barker_, May 31 2018: (Start)
%F G.f.: x*(1000  4124*x + 7106*x^2  6297*x^3 + 2838*x^4  517*x^5) / (1  x)^6.
%F a(n) = 6*a(n1)  15*a(n2) + 20*a(n3)  15*a(n4) + 6*a(n5)  a(n6) for n>6.
%F (End)
%e Some solutions for n=4:
%e ..0..0..0..0..0....0..0..0..1..0....0..0..0..0..0....0..0..0..0..0
%e ..0..0..0..0..0....0..0..0..1..0....0..0..0..0..0....0..0..0..0..0
%e ..0..0..0..0..0....0..0..0..1..0....0..0..0..0..1....0..0..0..0..0
%e ..0..0..0..0..1....0..1..1..1..1....0..0..1..1..1....0..0..1..0..1
%e ..0..0..1..0..0....1..1..1..1..1....0..0..1..0..1....0..0..0..1..1
%e ..0..0..0..0..0....0..1..1..1..1....0..0..0..0..1....0..1..1..1..1
%Y Cf. A202461.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 19 2011
