%I #5 Mar 31 2012 12:36:47
%S 390,2100,10080,50310,247800,1226040,6056600,29936040,147935520,
%T 731109730,3613107680,17855974900,88243889790,436100216050,
%U 2155200833200,10650972655340,52636955728500,260131094865980,1285564199904440
%N Number of (n+2)X4 binary arrays avoiding patterns 000 and 001 in rows, columns and nw-to-se diagonals
%C Column 2 of A202435
%H R. H. Hardin, <a href="/A202429/b202429.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) +16*a(n-2) +21*a(n-3) -13*a(n-4) -31*a(n-5) +9*a(n-6) +20*a(n-7) -12*a(n-8) +a(n-10)
%e Some solutions for n=4
%e ..0..1..0..0....1..1..1..0....1..0..1..1....1..1..1..1....1..1..1..0
%e ..1..1..1..1....0..1..1..1....0..1..1..1....1..1..0..0....0..1..1..1
%e ..1..1..1..0....1..1..1..0....1..1..1..1....1..1..1..1....1..1..1..1
%e ..1..1..1..1....1..1..0..1....0..1..0..1....1..1..1..1....1..1..1..1
%e ..1..1..1..0....0..1..1..1....1..1..1..1....1..1..1..0....1..1..1..1
%e ..0..1..0..0....1..0..1..1....1..1..0..1....1..1..0..1....1..0..1..1
%K nonn
%O 1,1
%A _R. H. Hardin_ Dec 19 2011