%I #11 Mar 30 2012 18:36:00
%S 14,56,28361,119507,191557,287039,691259,750889
%N n such that the sum of digit !! of n equals the sum of dn, 1<d<n.
%C No further terms less than 10^8.
%C The double factorial n!! (A006882) of a positive integer n is the product of the positive integers <= n that have the same parity as n.
%e 56 is in the sequence because 5!! + 6!! = 15 + 48 = 63, and sum of the divisors 1< d< 56 = sigma(56)  56  1 = 120  56  1 = 63.
%t Q[n_]:=Module[{a=Total[Rest[Most[Divisors[n]]]]}, a == Total[IntegerDigits[n]!!]]; Select[Range[2, 10^5], Q]
%Y Cf. A006882, A048050.
%K nonn,hard,base
%O 1,1
%A _Michel Lagneau_, Dec 16 2011
