The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202192 Number of partitions of 5n with equal number of parts congruent to each of 1, 2, 3 and 4 modulo 5. 3

%I

%S 1,1,3,8,22,53,124,269,568,1152,2284,4410,8363,15542,28438,51201,

%T 90930,159300,275740,471706,798388,1337478,2219395,3649432,5950078,

%U 9622364,15442269,24600952,38919910,61164114,95513618,148247892,228761668,351032568,535772894

%N Number of partitions of 5n with equal number of parts congruent to each of 1, 2, 3 and 4 modulo 5.

%H Alois P. Heinz, <a href="/A202192/b202192.txt">Table of n, a(n) for n = 0..100</a>

%H <a href="/wiki/Partitions_of_5n">Index and properties of sequences related to partitions of 5n</a>

%F a(n) = A046776(n) + A202086(n) + A202088(n).

%F a(n) = A046787(n) + A000041(n).

%t mkl[i_, l_] := Module[{ll, mn, x}, ll = If[Mod[i, 5] == 0, l, MapAt[#+1&, l, Mod[i, 5]]]; mn = Min[l] - 1; If[mn <= 0, ll, Map[# - mn&, ll]]];

%t g[n_, i_, t_] := g[n, i, t] = Module[{m, mx}, If[n < 0, 0, If[n == 0, If[ t[[1]] > 0 && Equal @@ t[[1 ;; 4]], 1, 0] , If[i == 0, 0, If[i < 5, mx = Max[t]; m = n - 10 mx + t[[1]] + 2 t[[2]] + 3 t[[3]] + 4 t[[4]]; If[m >= 0 && Mod[m, 10] == 0, 1, 0], g[n, i-1, t] + g[n-i, i, mkl[i, t]]]]]]];

%t a[n_] := g[5n, 5n, {0, 0, 0, 0}] + PartitionsP[n];

%t Table[a[n], {n, 0, 34}] (* _Jean-François Alcover_, May 25 2019, after _Alois P. Heinz_ in A046787 *)

%Y Cf. A046776.

%K nonn

%O 0,3

%A _Max Alekseyev_, Dec 14 2011

%E a(33)-a(34) from _Alois P. Heinz_, May 24 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 30 02:04 EDT 2021. Contains 346346 sequences. (Running on oeis4.)