Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #7 Jan 30 2025 11:44:48
%S 3,3,7,7,3,6,1,4,8,4,1,9,7,4,0,0,5,7,9,2,5,5,0,2,5,0,5,8,8,8,9,2,1,0,
%T 6,1,4,3,9,2,6,1,0,8,0,3,0,3,1,5,9,4,9,4,8,2,5,0,4,0,2,2,1,0,4,2,4,4,
%U 1,7,7,6,0,9,0,2,6,1,0,7,7,4,6,8,2,9,4,9,2,4,0,2,5,7,2,0,2,7,5
%N Decimal expansion of the greatest x satisfying x^2+5x+1=e^x.
%C See A201741 for a guide to related sequences. The Mathematica program includes a graph.
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e least: -4.79309545512749358956562110850420...
%e greatest: 3.377361484197400579255025058889...
%t a = 1; b = 5; c = 1;
%t f[x_] := a*x^2 + b*x + c; g[x_] := E^x
%t Plot[{f[x], g[x]}, {x, -5, 3.5}, {AxesOrigin -> {0, 0}}]
%t r = x /. FindRoot[f[x] == g[x], {x, -4.8, -4.7}, WorkingPrecision -> 110]
%t RealDigits[r] (* A201931 *)
%t r = x /. FindRoot[f[x] == g[x], {x, 3.3, 3.4}, WorkingPrecision -> 110]
%t RealDigits[r] (* A201932 *)
%Y Cf. A201741.
%K nonn,cons,changed
%O 1,1
%A _Clark Kimberling_, Dec 06 2011