Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Sep 12 2018 01:32:57
%S 3,1,3,0,2,5,2,7,8,6,1,7,3,5,3,6,0,3,5,0,0,3,7,0,1,2,2,7,7,7,5,4,0,3,
%T 1,6,3,6,9,2,7,7,5,4,0,1,2,3,7,9,0,9,2,2,3,2,0,4,2,7,8,8,9,1,6,2,7,6,
%U 5,5,0,4,1,7,3,6,7,9,6,3,0,5,0,2,1,9,0,5,4,6,7,0,4,3,8,2,7,8,1
%N Decimal expansion of greatest x satisfying 9*x^2 = csc(x) and 0 < x < Pi.
%C See A201564 for a guide to related sequences. The Mathematica program includes a graph.
%H G. C. Greubel, <a href="/A201659/b201659.txt">Table of n, a(n) for n = 1..10000</a>
%e least: 0.4871825725461343607675424300430642207826...
%e greatest: 3.1302527861735360350037012277754031636...
%t a = 9; c = 0;
%t f[x_] := a*x^2 + c; g[x_] := Csc[x]
%t Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
%t r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
%t RealDigits[r] (* A201658 *)
%t r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
%t RealDigits[r] (* A201659 *)
%o (PARI) a=9; c=0; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Sep 11 2018
%Y Cf. A201564.
%K nonn,cons
%O 1,1
%A _Clark Kimberling_, Dec 04 2011