The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200984 Number of nX2 0..4 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other 1

%I

%S 10,10,20,79,21,226,157,227,678,120,1272,789,1015,2697,404,4232,2484,

%T 3008,7496,1025,10650,6050,7060,16895,2181,22530,12525,14255,33174,

%U 4116,42336,23177,25907,59073,7120,72992,39504,43560,97792,11529,117882,63234

%N Number of nX2 0..4 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other

%C Column 2 of A200990

%H R. H. Hardin, <a href="/A200984/b200984.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 5*a(n-5) -10*a(n-10) +10*a(n-15) -5*a(n-20) +a(n-25)

%F Subsequences for n modulo 5 = 1,2,3,4,0:

%F p=(n+4)/5: a(n) = (115/6)*p^4 - 11*p^3 + (11/6)*p^2

%F q=(n+3)/5: a(n) = (115/12)*q^4 + (1/2)*q^3 - (1/12)*q^2

%F r=(n+2)/5: a(n) = (115/12)*r^4 + (49/6)*r^3 + (23/12)*r^2 + (1/3)*r

%F s=(n+1)/5: a(n) = (115/6)*s^4 + 35*s^3 + (125/6)*s^2 + 4*s

%F t=(n+0)/5: a(n) = (23/12)*t^4 + (37/6)*t^3 + (91/12)*t^2 + (13/3)*t + 1

%e Some solutions for n=3

%e ..0..1....0..2....0..1....0..3....0..2....0..1....0..1....0..2....0..2....0..2

%e ..1..2....1..3....2..3....1..3....1..3....0..3....0..2....1..3....0..3....1..3

%e ..3..4....4..4....2..4....2..4....2..4....2..4....3..4....3..4....1..4....1..4

%K nonn

%O 1,1

%A _R. H. Hardin_ Nov 25 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 23:50 EST 2022. Contains 350504 sequences. (Running on oeis4.)