Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Sep 08 2022 08:46:00
%S 22,190,2878,3862,111382,117118,3864190,3897622,131738902,131933758,
%T 4477986238,4479121942,152135692822,152142312190,5168228240638,
%U 5168266821142,175568164615702,175568389479358,5964152516784190,5964153827385622,202605635754466582
%N Successive values x of solutions Mordell's elliptic curve x^3-y^2 = d contained points {x,y} with quadratic extension sqrt(2) over rationals.
%C This sequence is equivalent of A200216, but A200216 was for quadratic field with extension sqrt(5).
%C Coefficient r=sqrt(x)/d tend to sqrt(2)/432 ~ 0.00327364 when x and d tend to infinity.
%C Starting from a(2)= 2878 all points are extremal (for definition see A200656).
%C (a(n)+10)/2 is perfect square of even number for each n.
%C All numbers in this sequence are of the form 2*(12*k+11).
%C For y values see A200937.
%C For d values see A200938.
%C When n is even d=A200938(n) are positive~, when n is odd d=A200938(n) are negative.
%H G. C. Greubel, <a href="/A200936/b200936.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = (A200937(n)^2 + A200938(n))^(1/3).
%F a(n) = a(n-1)+ 40*a(n-2) - 40*a(n-3) - 206*a(n-4) + 206*a(n-5) + 40*a(n-6) - 40*a(n-7) - a(n-8) + a(n-9).
%F G.f.: 2*(11+84*z+904*z^2-2868*z^3+492*z^5-12*z^7+2266*z^4-440*z^6 +11*z^8)/((1-z)*(z^2+6*z+1)*(1-6*z+z^2)*(z^2+2*z-1)*(z^2-2*z-1)).
%F a(2*n + 1) - a(2*n) = 24 * A001333(2*n + 3), a(n) = a(-5-n) for all n in Z. - _Michael Somos_, Aug 23 2018
%e a(3)=2878=A200656(1) because 2878^3-154396^2=15336.
%e G.f. = 22 + 190*x + 2868*x^2 + 3862*x^3 + 111382*x^4 + 117118*x^5 + ... - _Michael Somos_, Aug 23 2018
%t aa = {22, 190, 2878, 3862, 111382, 117118, 3864190, 3897622, 131738902}; a1 = aa[[1]]; a2 = aa[[3]]; a3 = aa[[3]]; a4 = aa[[4]]; a5 = aa[[5]]; a6 = aa[[6]]; a7 = aa[[7]]; a8 = aa[[8]]; a9 = aa[[9]]; Do[an = a9 + 40*a8 - 40*a7 - 206*a6 + 206*a5 + 40*a4 - 40*a3 - a2 + a1; a1 = a2; a2 = a3; a3 = a4; a4 = a5; a5 = a6; a6 = a7; a7 = a8; a8 = a9; a9 = an; AppendTo[aa, an], {nn, 20}]; aa
%t CoefficientList[Series[-2*(11 + 84*z + 904*z^2 - 2868*z^3 + 492*z^5 - 12*z^7 + 2266*z^4 - 440*z^6 + 11*z^8)/((z - 1) (z^2 + 6*z + 1) (1 - 6*z + z^2) (z^2 + 2*z - 1) (z^2 - 2*z - 1)), {z, 0, 30}], z] (* _G. C. Greubel_, Jul 27 2018 *)
%t a[ n_] := With[{m = Max[-5 - n, n]}, SeriesCoefficient[ 2 (1 - 12 x - 40 x^2 + 396 x^3 - 1138 x^4 + 396 x^5 - 40 x^6 - 12 x^7 + x^8) / (x^2 (x - 1) (1 + 6 x + x^2) (1 - 6 x + x^2) (x^2 + 2 x - 1) (x^2 - 2 x - 1)), {x, 0, m}]]; (* _Michael Somos_, Aug 23 2018 *)
%t a[ n_] := With[ {m = If[ OddQ[n], -5 - n, n], r1 = 1 + Sqrt[2], r2 = 1 - Sqrt[2]}, Simplify[7 - 6 (6 r1 + r2) r1^m - 6 (r1 + 6 r2) r2^m + (169 r1 + 29 r2)/4 r1^(2 m) + (29 r1 + 169 r2)/4 r2^(2 m)]]; (* _Michael Somos_, Aug 25 2018 *)
%o (PARI) z='z+O('z^30); Vec(2*(11+84*z+904*z^2-2868*z^3+492*z^5 -12*z^7 +2266*z^4 -440*z^6 +11*z^8)/((1-z)*(z^2+6*z+1)*(1-6*z+z^2)*(z^2+2*z-1)*(z^2-2*z-1))) \\ _G. C. Greubel_, Jul 27 2018
%o (PARI) {a(n) = my(m = max(-5-n, n)); polcoeff( 2*(1 - 12*x - 40*x^2 + 396*x^3 - 1138*x^4 + 396*x^5 - 40*x^6 - 12*x^7 + x^8) / (x^2*(x - 1)*(1 + 6*x + x^2)*(1 - 6*x + x^2)*(x^2 + 2*x - 1)*(x^2 - 2*x - 1)) + x * O(x^m), m)}; /* _Michael Somos_, Aug 23 2018 */
%o (PARI) {a(n) = my(m = if(n%2, -5-n, n), r1 = 1 + quadgen(8), r2 = 1 - quadgen(8)); simplify(7 - 6*(6*r1 + r2) * r1^m - 6*(r1 + 6*r2) * r2^m + (169*r1 + 29*r2)/4 * r1^(2*m) + (29*r1 + 169*r2)/4 * r2^(2*m))}; /* _Michael Somos_, Aug 25 2018 */
%o (Magma) m:=30; R<z>:=PowerSeriesRing(Integers(), m); Coefficients(R!(2*(11+84*z+904*z^2-2868*z^3+492*z^5 -12*z^7 +2266*z^4 -440*z^6 +11*z^8)/((1-z)*(z^2+6*z+1)*(1-6*z+z^2)*(z^2+2*z-1)*(z^2-2*z-1)))); // _G. C. Greubel_, Jul 27 2018
%Y Cf. A001333, A200216, A200656.
%K nonn
%O 0,1
%A _Artur Jasinski_, Nov 25 2011