login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200029 G.f. satisfies: A(x) = 1 + x*A(x)^3 + x^2*A(x)^2 + x^3*A(x). 2
1, 1, 4, 18, 89, 483, 2765, 16441, 100553, 628496, 3996864, 25778259, 168216339, 1108586737, 7367790912, 49326025289, 332342006775, 2251828394103, 15333892329935, 104883312564708, 720280904233625, 4964456716210287, 34329831032740121, 238109354053880367 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..23.

FORMULA

Recurrence: 2*n*(2*n+1)*(3887*n^4 - 54440*n^3 + 250111*n^2 - 457630*n + 282264)*a(n) = 3*(34983*n^6 - 524943*n^5 + 2755069*n^4 - 6525877*n^3 + 7248740*n^2 - 3486644*n + 563184)*a(n-1) + 9*(7774*n^6 - 128315*n^5 + 763466*n^4 - 2108189*n^3 + 2796852*n^2 - 1569116*n + 201744)*a(n-2) + (42757*n^6 - 769868*n^5 + 5072115*n^4 - 15417004*n^3 + 21905960*n^2 - 12286992*n + 1257984)*a(n-3) - 36*(11*n^2 - 51*n - 2)*(113*n^2 - 685*n + 924)*a(n-4) - 2*(27209*n^6 - 571543*n^5 + 4528416*n^4 - 16844723*n^3 + 29833927*n^2 - 22362054*n + 4746168)*a(n-5) - (n-7)*(38870*n^5 - 602705*n^4 + 3170125*n^3 - 6712006*n^2 + 5294904*n - 895104)*a(n-6) + 648*(n-8)*(3*n - 7)*(11*n^2 - 51*n - 2)*a(n-7) + 108*(n-9)*(n+4)*(11*n^2 - 51*n - 2)*a(n-8) + 3*(n - 10)*(n-7)*(3887*n^4 - 38892*n^3 + 110113*n^2 - 105180*n + 24192)*a(n-9). - Vaclav Kotesovec, Sep 11 2013

a(n) ~ c*d^n/n^(3/2), where d = 7.40643631692299994... is the root of the equation -3 + 10*d^3 + 14*d^4 - 11*d^6 - 18*d^7 - 27*d^8 + 4*d^9 = 0 and c = 0.268208461330470914429962064... - Vaclav Kotesovec, Sep 11 2013

EXAMPLE

G.f.: A(x) = 1 + x + 4*x^2 + 18*x^3 + 89*x^4 + 483*x^5 + 2765*x^6 +...

Related expansions:

A(x)^2 = 1 + 2*x + 9*x^2 + 44*x^3 + 230*x^4 + 1288*x^5 + 7532*x^6 +...

A(x)^3 = 1 + 3*x + 15*x^2 + 79*x^3 + 435*x^4 + 2517*x^5 + 15064*x^6 +...

MATHEMATICA

nmax=20; aa=ConstantArray[0, nmax]; aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n, {n, 1, j-1}]+koef*x^j; sol=Solve[Coefficient[1 + x*AGF^3 + x^2*AGF^2 + x^3*AGF - AGF, x, j]==0, koef][[1]]; aa[[j]]=koef/.sol[[1]], {j, 2, nmax}]; Flatten[{1, aa}] (* Vaclav Kotesovec, Sep 11 2013 *)

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*A^3+x^2*A^2+x^3*A^1+x*O(x^n)); polcoeff(A, n)}

CROSSREFS

Cf. A200028, A200030.

Sequence in context: A046984 A129323 A000305 * A020070 A197650 A036749

Adjacent sequences:  A200026 A200027 A200028 * A200030 A200031 A200032

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 03:02 EST 2016. Contains 278771 sequences.