This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200024 Decimal expansion of least x satisfying x^2 - 2*cos(x) = 4*sin(x), negated. 3

%I

%S 4,2,3,5,2,7,2,9,4,7,1,8,6,9,1,1,6,1,8,5,7,4,1,1,5,5,5,0,9,6,9,2,8,8,

%T 3,4,0,2,6,1,3,5,4,6,3,4,7,0,2,5,0,3,2,6,3,0,0,0,1,8,3,3,2,6,9,9,7,3,

%U 3,7,4,3,5,0,7,9,3,7,1,8,8,5,4,1,2,8,7,9,0,5,6,9,6,1,6,7,8,1,2

%N Decimal expansion of least x satisfying x^2 - 2*cos(x) = 4*sin(x), negated.

%C See A199949 for a guide to related sequences. The Mathematica program includes a graph.

%H G. C. Greubel, <a href="/A200024/b200024.txt">Table of n, a(n) for n = 0..10000</a>

%e least x: -0.42352729471869116185741155509692883402...

%e greatest x: 1.8307334532908635992102359547341478845366...

%t a = 1; b = -2; c = 4;

%t f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

%t Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, -.43, -.42}, WorkingPrecision -> 110]

%t RealDigits[r] (* A200024 *)

%t r = x /. FindRoot[f[x] == g[x], {x, 1.83, 1.84}, WorkingPrecision -> 110]

%t RealDigits[r] (* A200025 *)

%o (PARI) a=1; b=-2; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 24 2018

%Y Cf. A199949.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Nov 13 2011

%E a(87)-a(98) corrected by _G. C. Greubel_, Jun 24 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 05:51 EDT 2019. Contains 328044 sequences. (Running on oeis4.)