login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199933 Trisection 0 of A199744. 1

%I

%S 1,1,-4,0,20,-25,-71,216,94,-1220,1037,4941,-11440,-11008,72112,

%T -33453,-326675,577060,950750,-4129272,279257,20740793,-27217100,

%U -72078336,228625372,83808415,-1271796511,1153458144,5060707454,-12183603100,-10694679515,75519944325,-39290857304,-336819940736

%N Trisection 0 of A199744.

%H Colin Barker, <a href="/A199933/b199933.txt">Table of n, a(n) for n = 0..1000</a>

%H Hirschhorn, Michael D., <a href="http://www.fq.math.ca/43-4.html">Non-trivial intertwined second-order recurrence relations</a>, Fibonacci Quart. 43 (2005), no. 4, 316-325. See p. 324.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-5,1,-1).

%F From _Colin Barker_, Dec 27 2017: (Start)

%F G.f.: (1 + 2*x + 2*x^2) / (1 + x + 5*x^2 - x^3 + x^4).

%F a(n) = -a(n-1) - 5*a(n-2) + a(n-3) - a(n-4) for n>3.

%F (End)

%t CoefficientList[ Series[(1 +2x +2x^2)/(1 +x +5x^2 -x^3 +x^4), {x, 0, 33}], x] (* or *)

%t LinearRecurrence[{-1, -5, 1, -1}, {1, 1, -4, 0}, 33] (* _Robert G. Wilson v_, Dec 27 2017 *)

%o (PARI) Vec((1 + 2*x + 2*x^2) / (1 + x + 5*x^2 - x^3 + x^4) + O(x^40)) \\ _Colin Barker_, Dec 27 2017

%K sign,easy

%O 0,3

%A _N. J. A. Sloane_, Nov 12 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 30 18:28 EDT 2021. Contains 346359 sequences. (Running on oeis4.)