OFFSET
0,3
FORMULA
a(n) = n!^2*sum(m=1..n, m!*sum(i=0..n-m, (2^i*m^(n-m-i)* sum(k=0..i, (Stirling2(i,k)*k!*Stirling1(m+k,m))/(m+k)!))/(i!*(n-m-i)!))), n>0, a(0)=1.
a(n) ~ n!^2 * sinh(r)^2 / ((2*sinh(r) - r*cosh(r)) * r^(n+2)), where r = 1.3132837183534835944436309473975491200703574291896572634517... is the root of the equation 2*r^2 = exp(r) - exp(-r). - Vaclav Kotesovec, Jan 23 2025
EXAMPLE
1/(1-x^2*csch(x)) = 1 + x + x^2 + (5*x^3)/6 + (2*x^4)/3 + (187*x^5)/360 + (2*x^6)/5 + (4631*x^7)/1512 + (221*x^8)/945 + (11983*x^9)/67200 + (214*x^10)/1575 + ...
MATHEMATICA
nmax = 20; CoefficientList[Series[1/(1-x^2*Csch[x]), {x, 0, nmax}], x] * Range[0, nmax]!^2 (* Vaclav Kotesovec, Jan 23 2025 *)
PROG
(Maxima) a(n) := if n=0 then 1 else n!^2 * sum(m!*sum((2^i*m^(n-m-i)* sum((stirling2(i, k)*k!*stirling1(m+k, m))/(m+k)!, k, 0, i))/(i!*(n-m-i)!), i, 0, n-m), m, 1, n);
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Nov 08 2011
STATUS
approved