login
Primes having only the (decimal) digits 2, 3 and 4.
4

%I #13 Sep 08 2022 08:46:00

%S 2,3,23,43,223,233,433,443,2243,2333,2423,3323,3343,3433,4243,4423,

%T 22343,22433,23333,24223,24443,32233,32323,32423,32443,33223,33343,

%U 42223,42323,42433,42443,43223,222323,223243,223423,224233,224423,224443,232333,232433,233323,233423,234323,234343,242243,243233,243343,243433,244243,244333

%N Primes having only the (decimal) digits 2, 3 and 4.

%C A020458 and A020461 are subsequences. - _Vincenzo Librandi_, Jul 28 2015

%H Harvey P. Dale, <a href="/A199342/b199342.txt">Table of n, a(n) for n = 1..1000</a>

%t Select[Prime[Range[10^5]], Complement[IntegerDigits[#], {3, 4, 2}]=={}&] (* _Vincenzo Librandi_, Jul 28 2015 *)

%t Table[Select[FromDigits/@Tuples[{2,3,4},n],PrimeQ],{n,6}]//Flatten (* _Harvey P. Dale_, Nov 06 2019 *)

%o (PARI) a(n, list=0, L=[2, 3, 4], reqpal=0)={my(t); for(d=1, 1e9, u=vector(d, i, 10^(d-i))~; forvec(v=vector(d, i, [1+(i==1&!L[1]), #L]), isprime(t=vector(d, i, L[v[i]])*u)|next; reqpal & !isprime(A004086(t)) & next; list & print1(t", "); n--|return(t)))}

%o (Magma) [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [3, 4, 2]]; // _Vincenzo Librandi_, Jul 28 2015

%Y Cf. A020449 - A020472, A199325 - A199329.

%Y Cf. similar sequences listed in A199340.

%K nonn,base,easy

%O 1,1

%A _M. F. Hasler_, Nov 05 2011