login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199290 Decimal expansion of x>0 satisfying 3*x^2+2*x*cos(x)=3. 3

%I

%S 7,9,3,1,0,7,1,6,5,1,2,2,0,9,2,0,1,3,0,8,4,6,9,6,6,9,8,6,7,1,6,6,6,8,

%T 9,3,8,6,3,1,0,9,4,6,7,3,5,4,9,4,7,5,9,1,6,0,7,6,9,0,7,5,2,1,1,6,4,6,

%U 1,1,1,6,3,3,2,0,6,2,4,6,3,0,5,5,8,8,2,3,7,3,3,0,5,2,0,0,7,6,9

%N Decimal expansion of x>0 satisfying 3*x^2+2*x*cos(x)=3.

%C See A199170 for a guide to related sequences. The Mathematica program includes a graph.

%e negative: -1.1465729939312446659051094914162065825...

%e positive: 0.79310716512209201308469669867166689386...

%t a = 3; b = 2; c = 3;

%t f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c

%t Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]

%t RealDigits[r] (* A199289 *)

%t r = x /. FindRoot[f[x] == g[x], {x, .79, .80}, WorkingPrecision -> 110]

%t RealDigits[r] (* A199290 *)

%Y Cf. A199170.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Nov 05 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 06:03 EST 2020. Contains 332299 sequences. (Running on oeis4.)