login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199279 Decimal expansion of x<0 satisfying 3*x^2+x*cos(x)=1. 3

%I

%S 7,1,6,5,5,0,3,8,3,9,0,6,1,7,8,2,0,2,3,9,2,3,8,8,0,3,0,1,8,3,5,5,1,3,

%T 5,8,0,8,2,7,4,0,2,7,3,3,1,9,5,4,2,4,7,5,3,8,0,7,3,4,7,0,9,9,7,2,4,7,

%U 7,5,8,3,4,8,7,4,5,5,3,6,0,6,5,1,6,7,2,6,6,9,3,5,5,4,1,7,1,7,1

%N Decimal expansion of x<0 satisfying 3*x^2+x*cos(x)=1.

%C See A199170 for a guide to related sequences. The Mathematica program includes a graph.

%e negative: -0.7165503839061782023923880301835513...

%e positive: 0.4462598117717659562961701211990923...

%t Remove["Global`*"];

%t a = 3; b = 1; c = 1;

%t f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c

%t Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110]

%t RealDigits[r] (* A199279 *)

%t r = x /. FindRoot[f[x] == g[x], {x, .44, .45}, WorkingPrecision -> 110]

%t RealDigits[r] (* A199280 *)

%Y Cf. A199170.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Nov 04 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 04:09 EST 2020. Contains 332037 sequences. (Running on oeis4.)