login
Decimal expansion of x < 0 satisfying 3*x^2+2*sin(x) = 3.
3

%I #10 Feb 07 2025 16:44:05

%S 1,2,8,0,1,1,7,0,2,7,8,2,3,5,9,2,9,0,0,0,4,5,6,8,9,8,4,5,5,5,8,5,5,4,

%T 9,7,9,6,5,5,2,8,2,3,5,3,6,5,3,4,8,6,3,0,8,5,6,7,7,8,2,6,9,0,0,8,4,7,

%U 4,8,3,3,1,9,7,1,7,6,9,0,6,9,7,1,8,5,9,5,0,8,4,8,2,6,2,9,7,7,4,8,9,7

%N Decimal expansion of x < 0 satisfying 3*x^2+2*sin(x) = 3.

%C See A198866 for a guide to related sequences. The Mathematica program includes a graph.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.

%e negative: -1.280117027823592900045689845558554979655...

%e positive: 0.741456706769858920159460956349108949987...

%t a = 3; b = 2; c = 3;

%t f[x_] := a*x^2 + b*Sin[x]; g[x_] := c

%t Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, -1.29, -1.28}, WorkingPrecision -> 110]

%t RealDigits[r] (* A199156 *)

%t r = x /. FindRoot[f[x] == g[x], {x, .74, .75}, WorkingPrecision -> 110]

%t RealDigits[r] (* A199157 *)

%Y Cf. A198866.

%K nonn,cons

%O 1,2

%A _Clark Kimberling_, Nov 03 2011

%E a(93) onwards corrected by _Georg Fischer_, Aug 01 2021