The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A198904 Number of nX6 0..4 arrays with values 0..4 introduced in row major order and no element equal to any horizontal or vertical neighbor 2

%I

%S 51,62004,89793204,130292546801,189062985604305,274342896958292170,

%T 398089706066811447174,577654521153750977585383,

%U 838214957290859115489996817,1216305402162613228248847610489

%N Number of nX6 0..4 arrays with values 0..4 introduced in row major order and no element equal to any horizontal or vertical neighbor

%C Column 6 of A198906

%H R. H. Hardin, <a href="/A198904/b198904.txt">Table of n, a(n) for n = 1..100</a>

%F Empirical: a(n) = 1941*a(n-1) -806387*a(n-2) +148087843*a(n-3) -14409929271*a(n-4) +778094676063*a(n-5) -21816737058431*a(n-6) +172301552678113*a(n-7) +7343185920165785*a(n-8) -245567930834154099*a(n-9) +3173967512676632848*a(n-10) -15227320856420081570*a(n-11) -91185217544269175883*a(n-12) +1851754850894045611993*a(n-13) -13021262413927953929580*a(n-14) +53026970301996239080604*a(n-15) -137791962761820102384680*a(n-16) +234523646685947458039624*a(n-17) -259529910793881853229984*a(n-18) +179240545997964052307808*a(n-19) -69895831119161489802880*a(n-20) +11699525896373883270144*a(n-21)

%e Some solutions with values 0 to 4 for n=4

%e ..0..1..0..2..3..4....0..1..0..2..0..3....0..1..0..2..3..0....0..1..0..2..0..3

%e ..1..0..1..0..2..1....1..0..1..0..3..2....1..0..1..0..4..3....1..0..1..0..3..0

%e ..0..1..0..2..1..4....0..1..0..3..4..0....0..1..0..2..3..1....0..1..0..3..0..1

%e ..1..0..1..4..2..0....1..0..1..2..1..4....1..0..1..0..2..0....1..0..1..4..1..4

%K nonn

%O 1,1

%A _R. H. Hardin_ Oct 31 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 19 15:40 EDT 2022. Contains 356229 sequences. (Running on oeis4.)