%I
%S 3,13,13,71,177,71,433,1399,1399,433,2763,14109,26704,14109,2763,
%T 17941,146187,421185,421185,146187,17941,117263,1532249,7302285,
%U 13048509,7302285,1532249,117263,768313,16411255,128955464,396482929,396482929
%N T(n,k)=Number of 2nX2k 0..2 arrays with values 0..2 introduced in row major order and each element unequal to exactly two horizontal and vertical neighbors
%C Table starts
%C .......3........13.........71.........433........2763.......17941.......117263
%C ......13.......177.......1399.......14109......146187.....1532249.....16411255
%C ......71......1399......26704......421185.....7302285...128955464...2298267371
%C .....433.....14109.....421185....13048509...396482929.12354617337.388054368497
%C ....2763....146187....7302285...396482929.22496409154
%C ...17941...1532249..128955464.12354617337
%C ..117263..16411255.2298267371
%C ..768313.176845253
%C .5038611
%H R. H. Hardin, <a href="/A198452/b198452.txt">Table of n, a(n) for n = 1..49</a>
%e Some solutions for n=5 k=3
%e ..0..1..0..1..0..1....0..1..0..1..0..1....0..1..0..1..0..1....0..1..0..1..0..1
%e ..1..1..0..1..0..0....1..1..0..1..0..2....1..1..0..1..0..0....2..1..0..1..0..0
%e ..2..2..0..1..1..1....0..0..0..1..0..2....0..0..0..1..1..1....2..1..0..1..1..1
%e ..0..2..0..0..0..0....1..1..1..1..0..1....2..2..2..0..0..2....1..1..0..2..2..2
%e ..0..2..2..2..2..2....0..0..0..0..0..1....0..0..2..0..0..2....0..0..0..2..0..0
%e ..1..0..0..0..0..1....1..1..1..1..1..0....1..0..2..1..1..0....2..2..2..2..0..1
%e ..1..0..2..2..0..1....0..0..0..0..1..0....1..0..2..1..1..0....0..0..0..0..0..1
%e ..2..0..2..2..0..2....2..2..2..0..1..1....0..0..2..0..0..2....2..2..2..2..2..2
%e ..2..0..0..0..0..2....1..1..2..0..2..2....2..2..2..0..0..2....1..1..0..0..0..0
%e ..0..2..2..1..1..0....2..1..2..0..2..1....0..1..1..2..2..1....0..1..0..1..1..2
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ Oct 25 2011
|