login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal expansion of greatest x having 4*x^2+3x=cos(x).
3

%I #5 Mar 30 2012 18:57:54

%S 2,4,4,0,4,5,3,2,2,6,2,9,1,3,5,5,9,1,4,6,6,8,5,8,2,8,2,9,3,9,4,4,8,0,

%T 7,9,4,9,3,2,8,4,3,7,5,3,3,7,6,0,8,7,5,4,6,7,2,2,2,3,1,3,5,5,5,6,1,9,

%U 0,4,2,7,8,6,2,9,9,9,9,7,3,4,9,3,8,4,1,6,5,2,3,1,4,6,8,5,1,7,4

%N Decimal expansion of greatest x having 4*x^2+3x=cos(x).

%C See A197737 for a guide to related sequences. The Mathematica program includes a graph.

%e least x: -0.91615106109683577000135072803946391...

%e greatest x: 0.244045322629135591466858282939448079493...

%t a = 4; b = 3; c = 1;

%t f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

%t Plot[{f[x], g[x]}, {x, -1, 1}]

%t r1 = x /. FindRoot[f[x] == g[x], {x, -1, -.9}, WorkingPrecision -> 110]

%t RealDigits[r1] (* A198361 *)

%t r2 = x /. FindRoot[f[x] == g[x], {x, .24, .25}, WorkingPrecision -> 110]

%t RealDigits[r2] (* A198362 *)

%Y Cf. A197737.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Oct 24 2011