login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 2nX4 0..3 arrays with values 0..3 introduced in row major order and each element equal to exactly one horizontal and vertical neighbor
1

%I #5 Mar 31 2012 12:36:34

%S 17,2452,413375,72559212,12940532183,2322145946560,417688220022251,

%T 75197892524349728,13542776983363615379,2439305921057059368196,

%U 439386062130801234903655,79146996287674677581757652

%N Number of 2nX4 0..3 arrays with values 0..3 introduced in row major order and each element equal to exactly one horizontal and vertical neighbor

%C Column 2 of A198290

%H R. H. Hardin, <a href="/A198288/b198288.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n) = 341*a(n-1) -38970*a(n-2) +2135218*a(n-3) -67448667*a(n-4) +1375490159*a(n-5) -19754442612*a(n-6) +216233988876*a(n-7) -1930500555319*a(n-8) +14641614117891*a(n-9) -95232147538058*a(n-10) +525211971434290*a(n-11) -2391181584630749*a(n-12) +8566626104248057*a(n-13) -21804187934100424*a(n-14) +26325592371676176*a(n-15) +62458261081740144*a(n-16) -409636534740954048*a(n-17) +948362811460747776*a(n-18) -580420633538230272*a(n-19) -2477378037254639616*a(n-20) +6262481237853487104*a(n-21) -5586587527536967680*a(n-22) +1769580684990480384*a(n-23)

%e Some solutions for n=3

%e ..0..0..1..1....0..0..1..1....0..0..1..1....0..1..0..2....0..1..0..0

%e ..1..1..2..2....1..1..0..2....1..1..0..0....0..1..0..2....0..1..2..2

%e ..2..2..1..1....3..3..0..2....2..3..1..1....3..3..2..3....3..3..0..0

%e ..0..0..2..2....0..2..1..1....2..3..0..0....1..1..2..3....0..0..3..3

%e ..3..3..0..0....0..2..3..2....1..2..3..3....2..3..3..2....1..2..1..0

%e ..1..1..3..3....1..1..3..2....1..2..0..0....2..0..0..2....1..2..1..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Oct 23 2011