login
Number of partitions of n into distinct positive quarter-squares (cf. A002620).
5

%I #8 Jul 13 2013 12:04:17

%S 1,1,1,1,1,1,2,2,1,2,2,2,3,3,2,3,4,3,4,4,4,5,6,5,4,6,6,7,7,7,7,9,10,8,

%T 9,9,11,12,12,11,11,13,15,16,13,15,16,17,20,19,17,20,23,20,22,23,23,

%U 27,29,26,25,30,31,32,34,33,32,38,41,37,39,41,42

%N Number of partitions of n into distinct positive quarter-squares (cf. A002620).

%H Reinhard Zumkeller, <a href="/A197081/b197081.txt">Table of n, a(n) for n = 0..555</a>

%e a(12) = #{12, 9+2+1, 6+4+2} = 3;

%e a(24) = #{20+4, 16+6+2, 12+9+2+1, 12+6+4+2} = 4.

%o (Haskell)

%o a197081 = p (drop 2 a002620_list) where

%o p _ 0 = 1

%o p (k:ks) m | m < k = 0

%o | otherwise = p ks (m - k) + p ks m

%Y Cf. A197122, A002378, A000290, A000009.

%K nonn

%O 0,7

%A _Reinhard Zumkeller_, Oct 10 2011