login
T(n,k) = Number of n X k 0..4 arrays with each element x equal to the number of its horizontal and vertical neighbors equal to 3,1,2,4,0 for x=0,1,2,3,4.
7

%I #8 May 05 2014 12:14:37

%S 1,2,2,3,6,3,4,13,13,4,6,34,51,34,6,9,81,205,205,81,9,13,199,812,1407,

%T 812,199,13,19,487,3295,9492,9492,3295,487,19,28,1190,13286,65251,

%U 109286,65251,13286,1190,28,41,2910,53418,445506,1282123,1282123,445506,53418

%N T(n,k) = Number of n X k 0..4 arrays with each element x equal to the number of its horizontal and vertical neighbors equal to 3,1,2,4,0 for x=0,1,2,3,4.

%C Every 0 is next to 0 3's, every 1 is next to 1 1's, every 2 is next to 2 2's, every 3 is next to 3 4's, every 4 is next to 4 0's.

%C Table starts:

%C ..1....2......3.........4...........6.............9..............13

%C ..2....6.....13........34..........81...........199.............487

%C ..3...13.....51.......205.........812..........3295...........13286

%C ..4...34....205......1407........9492.........65251..........445506

%C ..6...81....812......9492......109286.......1282123........14895018

%C ..9..199...3295.....65251.....1282123......25822213.......513380599

%C .13..487..13286....445506....14895018.....513380599.....17446576240

%C .19.1190..53418...3041309...173097490...10204673140....592290047724

%C .28.2910.215148..20782756..2014367937..203083535620..20128502440024

%C .41.7115.866828.142011656.23437273689.4041562578683.683993118482402

%H R. H. Hardin, <a href="/A197079/b197079.txt">Table of n, a(n) for n = 1..179</a>

%e Some solutions for n=6 k=4:

%e ..0..0..1..1....2..2..0..0....1..1..0..1....0..0..1..1....0..0..1..0

%e ..0..0..0..0....2..2..1..1....0..0..0..1....0..0..0..0....0..0..1..0

%e ..0..0..0..1....1..1..0..0....0..0..0..0....2..2..2..2....0..0..2..2

%e ..0..4..0..1....0..0..0..0....0..4..0..0....2..1..1..2....1..0..2..2

%e ..0..0..4..0....0..4..0..1....1..0..0..1....2..0..0..2....1..0..1..1

%e ..0..0..0..0....0..0..0..1....1..0..0..1....2..2..2..2....0..0..0..0

%Y Column 1 is A000930(n+1).

%Y Column 2 is A196906.

%K nonn,tabl

%O 1,2

%A _R. H. Hardin_, Oct 09 2011