OEIS A197032

RICHARD J. MATHAR

Abstract. The constant 2.3532099... in sequence [1, A197032] is a root of a cubic polynomial.

The equation of a bundle of lines with inclination α that run through the point $(x, y)=(2,1)$ is

$$
\begin{equation*}
y=\alpha(x-2)+1 \tag{1}
\end{equation*}
$$

These lines intersect the horizontal axis at

$$
\begin{equation*}
\alpha(x-2)+1=0 \tag{2}
\end{equation*}
$$

which has the solution

$$
\begin{equation*}
\left(x_{1}, y_{1}\right)=\left(2-\frac{1}{\alpha}, 0\right) \tag{3}
\end{equation*}
$$

These lines intersect the diagonal $y=x$ at

$$
\begin{equation*}
\alpha(x-2)+1=x \tag{4}
\end{equation*}
$$

which has the solution

$$
\begin{equation*}
\left(x_{2}, y_{2}\right)=\left(2+\frac{1}{\alpha-1}, 2+\frac{1}{\alpha-1}\right) \tag{5}
\end{equation*}
$$

The Euclidean distance between the intersections of the horizontal line and the diagonal is

$$
\begin{equation*}
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}=\frac{|2 \alpha-1| \sqrt{1+\alpha^{2}}}{|\alpha-1||\alpha|} \tag{6}
\end{equation*}
$$

The plot of the squared distance $d^{2}(\alpha)$ as a function of α looks as follows:

[^0]The Philo Line is defined by the minimum of that curve at $\alpha \approx-2.831177 \ldots$ [The global minimum at inclination $\alpha=1 / 2$ does not define a triangle but means that the horizontal line, the diagonal and the line of the bundle all intersect at $(0,0)$.]

An arithmetic expression for the location of the minimum is obtained by setting the derivative $\partial d^{2} / \partial \alpha=0$, so

$$
\begin{equation*}
-2 \frac{(2 \alpha-1)\left(\alpha^{3}+2 \alpha^{2}-2 \alpha+1\right)}{\alpha^{3}(\alpha-1)^{3}}=0 \tag{7}
\end{equation*}
$$

equivalent to the root of the polynomial

$$
\begin{equation*}
\alpha^{3}+2 \alpha^{2}-2 \alpha+1=0 \therefore \alpha_{1} \approx-2.831177 \tag{8}
\end{equation*}
$$

and the interception at

$$
\begin{equation*}
x_{1}=2-\frac{1}{\alpha_{1}} \approx 2.3532099 \ldots \tag{9}
\end{equation*}
$$

Inverting (3) as $\alpha_{1}=1 /\left(2-x_{1}\right)$ and plugging this into (8) one finds that x_{1} is a root of the polynomial

$$
\begin{equation*}
x^{3}-4 x^{2}+6 x-5=(x-1)^{3}-(x-1)^{2}+(x-1)-2 . \tag{10}
\end{equation*}
$$

This illustrates also the connection with [1, A357469].

References

[1] O. E. I. S. Foundation Inc., The On-Line Encyclopedia Of Integer Sequences, (2022), https://oeis.org/. MR 3822822
URL: http://www.mpia.de/~mathar
Email address: mathar@mpia.de
Hoeschstr. 7, 52372 Kreuzau, Germany

[^0]: Date: November 8, 2022.

