login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196018
G.f. satisfies: A(x) = 1/(1-x) - 1/(1-x*A(x)) + 1/(1-x*A(x)^2).
2
1, 1, 2, 6, 23, 98, 440, 2044, 9742, 47384, 234289, 1174214, 5951877, 30459550, 157168265, 816777857, 4271248777, 22459464722, 118678530165, 629867928597, 3356148860975, 17946684482409, 96280344449069, 518058601390577, 2795121781871727, 15118502434518352
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = 1 - x*(A(x) - A(x)^2 - A(x)^3) + x^2*(A(x) - 2*A(x)^2 - A(x)^4) + x^3*A(x)^4.
a(n) ~ sqrt((1/(-1 + r)^2 - s/(-1 + r*s)^2 + s^2/(-1 + r*s^2)^2) / (Pi*(1/(-1 + r*s^2)^2 + r*(1/(-1 + r*s)^3 - (4*s^2) / (-1 + r*s^2)^3)))) / (2*n^(3/2)*r^n), where r = 0.1741099691155951761402154753241071226265020289369... and s = 1.469614426933947254586622522985062658500679266649... are roots of the system of equations 1/(1-r) + 1/(-1+r*s) + 1/(1-r*s^2) = s, 2*r*s / (-1+r*s^2)^2 = 1 + r/(-1+r*s)^2. - Vaclav Kotesovec, Nov 18 2017
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 23*x^4 + 98*x^5 + 440*x^6 +...
Related series begin:
1/(1-x*A(x)) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 53*x^5 + 211*x^6 +...
1/(1-x*A(x)^2) = 1 + x + 3*x^2 + 10*x^3 + 37*x^4 + 150*x^5 + 650*x^6 +...
PROG
(PARI) {a(n)=local(A=1+x, X=x+x*O(x^n)); for(i=1, n, A=1/(1-X)-1/(1-X*A)+1/(1-X*A^2)); polcoeff(A, n)}
CROSSREFS
Sequence in context: A370183 A278301 A242586 * A009449 A233106 A133656
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 26 2011
STATUS
approved