login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195925 Positive integers a for which there is a (3/2)-Pythagorean triple (a,b,c) satisfying a<=b. 7
5, 6, 9, 10, 12, 13, 14, 15, 15, 17, 18, 18, 19, 20, 21, 21, 22, 23, 24, 25, 25, 26, 27, 27, 28, 29, 30, 30, 30, 30, 31, 32, 33, 34, 34, 35, 36, 36, 38, 38, 39, 39, 40, 42, 42, 42, 42, 43, 44, 45, 45, 45, 46, 47, 48, 48, 50, 50, 51, 51, 52, 54, 54, 54, 55, 55, 56 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences.

LINKS

Table of n, a(n) for n=1..67.

MATHEMATICA

z8 = 800; z9 = 400; z7 = 100;

k = 3/2; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b];

d[a_, b_] := If[IntegerQ[c[a, b]], {a, b, c[a, b]}, 0]

t[a_] := Table[d[a, b], {b, a, z8}]

u[n_] := Delete[t[n], Position[t[n], 0]]

Table[u[n], {n, 1, 15}]

t = Table[u[n], {n, 1, z8}];

Flatten[Position[t, {}]]

u = Flatten[Delete[t, Position[t, {}]]];

x[n_] := u[[3 n - 2]];

Table[x[n], {n, 1, z7}]  (* A195925 *)

y[n_] := u[[3 n - 1]];

Table[y[n], {n, 1, z7}]  (* A195926 *)

z[n_] := u[[3 n]];

Table[z[n], {n, 1, z7}]  (* A195927 *)

x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0]

y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0]

z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0]

f = Table[x1[n], {n, 1, z9}];

x2 = Delete[f, Position[f, 0]]  (* A195928 *)

g = Table[y1[n], {n, 1, z9}];

y2 = Delete[g, Position[g, 0]]  (* A195929 *)

h = Table[z1[n], {n, 1, z9}];

z2 = Delete[h, Position[h, 0]]  (* A195930 *)

CROSSREFS

(See A195925.)

Sequence in context: A227006 A139454 A049329 * A304432 A284936 A188191

Adjacent sequences:  A195922 A195923 A195924 * A195926 A195927 A195928

KEYWORD

nonn

AUTHOR

Clark Kimberling, Sep 26 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 16 09:06 EST 2019. Contains 330020 sequences. (Running on oeis4.)