login
Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(2,5,sqrt(29)).
5

%I #5 Mar 30 2012 18:57:45

%S 2,2,8,3,7,2,1,8,3,0,7,4,7,7,5,7,0,5,5,9,5,0,4,1,0,0,4,2,3,0,9,5,6,3,

%T 5,4,4,6,2,6,9,9,7,5,3,5,0,9,2,0,3,8,0,4,3,2,8,6,2,7,3,9,2,5,4,1,4,7,

%U 7,5,1,9,1,8,6,1,7,4,8,0,2,7,3,1,0,4,4,3,0,2,5,9,0,6,3,3,9,3,6,3

%N Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(2,5,sqrt(29)).

%C See A195284 for definitions and a general discussion.

%e (C)=2.2837218307477570559504100423095635446269975...

%t a = 2; b = 5; c = Sqrt[29]; f = 2 a*b/(a + b + c);

%t x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]

%t x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]

%t x3 = f*Sqrt[2]

%t N[x1, 100]

%t RealDigits[%] (* (A) A195359 *)

%t N[x2, 100]

%t RealDigits[%] (* (B) A195360 *)

%t N[x3, 100]

%t RealDigits[%] (* (C) A195361 *)

%t N[(x1 + x2 + x3)/(a + b + c), 100]

%t RealDigits[%] (* Philo(ABC,I) A195362 *)

%Y Cf. A195284.

%K nonn,cons

%O 1,1

%A _Clark Kimberling_, Sep 16 2011