login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (A091137(n)/n!) * Integral_{u=-1..1} u*(u+1)*...*(u+n-1) du.
3

%I #42 May 05 2019 03:24:23

%S 2,0,4,8,232,448,18224,35424,1036064,2025472,130960832,257072000,

%T 689908475264,1358275350528,8031885897472,15847920983552,

%U 7981032500085248,15774370258485248,12448755354530366464

%N a(n) = (A091137(n)/n!) * Integral_{u=-1..1} u*(u+1)*...*(u+n-1) du.

%C Numerators of the second row of an array based on Adams numerical integration. Take q!*s(m,q) = Integral_{-m-1..1} u*(u+1)*...*(u+q-1) du. a(n) is in the second row (case m=0) numerators of s(m,q) in the comments.

%C The unreduced array s(m,q), (m=-1,0,1,..., columns q=0,1,2,...) is

%C 1, 1/2, 5/12, 9/24, 251/720, 475/1440, = A002657(n)/A091137(n),

%C 2, 0, 4/12, 8/24, 232/720, 448/1440, = a(n)/A091137(n),

%C 3, -3/2, 9/12, 9/24, 243/720, 459/1440,

%C 4, -8/2, 32/12, 0, 224/720, 448/1440,

%C 5, -15/2, 85/12, -55/24, 475/720, 475/1440,

%C 6, -24/2, 180/12, -216/24, 2376/720, 0.

%C Column numerators: A000027, -A067998(n), A152064(n), A157371(n), A165281(n).

%C Page 56 of the reference.

%C (*) 2/2 = 1,

%C 2/2 + 0 = 1,

%C 2/3 + 0 + 1/3 = 1,

%C 2/4 + 0 + 1/6 + 1/3 = 1. Reduced.

%D P. Curtz, Intégration numérique des systèmes differentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969.

%F b(n) = a(n)/A091137(n).

%F b(0)/2 = 1,

%F b(0)/2 + b(1) = 1,

%F b(0)/3 + b(1)/2 + b(2) = 1,

%F b(0)/4 + b(1)/3 + b(2)/2 + b(3) = 1.

%F First vertical denominators: A028310(n) + 1. See A104661.

%F Values in (*).

%p A195287 := proc(n)

%p mul(u+i,i=0..n-1) ;

%p int(%,u=-1..1) ;

%p %/n!*A091137(n) ;

%p end proc:

%p seq(A195287(n),n=0..20) ; # _R. J. Mathar_, Oct 02 2011

%t (* a7 = A091137 *) a7[n_] := a7[n] = Product[d, {d, Select[Divisors[n] + 1, PrimeQ]}]*a7[n-1]; a7[0]=1; a[n_] := a7[n]/n!*Integrate[ Pochhammer[u, n], {u, -1, 1}]; Table[a[n], {n, 0, 18}] (* _Jean-François Alcover_, Aug 13 2012 *)

%K nonn

%O 0,1

%A _Paul Curtz_, Sep 20 2011