login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194911 Triangular array (and fractal sequence):  row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=2^(1/3). 4
1, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 1, 5, 2, 3, 4, 1, 5, 2, 6, 3, 4, 1, 5, 2, 6, 3, 7, 4, 8, 1, 5, 2, 6, 3, 7, 4, 8, 1, 5, 9, 2, 6, 3, 7, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12, 1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 3, 7, 11, 4, 8, 12 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

See A194832 for a general discussion. The triangle is not equal to A194841.

LINKS

Table of n, a(n) for n=1..94.

EXAMPLE

First nine rows:

1

1 2

1 2 3

4 1 2 3

4 1 5 2 3

4 1 5 2 6 3

4 1 5 2 6 3 7

4 8 1 5 2 6 3 7

4 8 1 5 9 2 6 3 7

MATHEMATICA

r = 2^(1/3);

t[n_] := Table[FractionalPart[k*r], {k, 1, n}];

f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@

Sort[t[n], Less]], {n, 1, 20}]]  (* A194911 *)

TableForm[Table[Flatten[(Position[t[n], #1] &) /@

Sort[t[n], Less]], {n, 1, 15}]]

row[n_] := Position[f, n];

u = TableForm[Table[row[n], {n, 1, 20}]]

g[n_, k_] := Part[row[n], k];

p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},

{k, 1, n}]]  (* A194912 *)

q[n_] := Position[p, n]; Flatten[Table[q[n],

{n, 1, 80}]]  (* A194913 *)

CROSSREFS

Cf. A194832, A194912, A194913.

Sequence in context: A194070 A195183 A194841 * A194865 A075425 A330960

Adjacent sequences:  A194908 A194909 A194910 * A194912 A194913 A194914

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Sep 05 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 03:25 EDT 2021. Contains 348065 sequences. (Running on oeis4.)