The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A194860 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194859; an interspersion. 4

%I

%S 1,3,2,6,5,4,9,8,7,10,14,12,11,15,13,20,18,16,21,19,17,27,25,23,28,26,

%T 24,22,34,32,30,36,33,31,29,35,43,40,38,45,42,39,37,44,41,53,50,47,55,

%U 52,49,46,54,51,48,63,60,57,65,62,59,56,64,61,58,66,75,71,68

%N Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194859; an interspersion.

%C See A194832 for a general discussion.

%e Northwest corner:

%e 1...3...6...9...14..20

%e 2...5...8...12..18..25

%e 4...7...11..16..23..30

%e 10..15..21..28..36..45

%e 13..19..26..33..42..52

%e 17..24..31..39..49..59

%t r = E;

%t t[n_] := Table[FractionalPart[k*r], {k, 1, n}];

%t f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@

%t Sort[t[n], Less]], {n, 1, 20}]] (* A194859 *)

%t TableForm[Table[Flatten[(Position[t[n], #1] &) /@

%t Sort[t[n], Less]], {n, 1, 15}]]

%t row[n_] := Position[f, n];

%t u = TableForm[Table[row[n], {n, 1, 20}]]

%t g[n_, k_] := Part[row[n], k];

%t p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},

%t {k, 1, n}]] (* A194860 *)

%t q[n_] := Position[p, n]; Flatten[Table[q[n],

%t {n, 1, 80}]] (* A194861 *)

%Y Cf. A194859, A194861, A194832.

%K nonn,tabl

%O 1,2

%A _Clark Kimberling_, Sep 04 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 23:42 EDT 2021. Contains 347673 sequences. (Running on oeis4.)