login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of k such that {k*e} < {n*e}, where { } = fractional part.
3

%I #5 Mar 30 2012 18:57:44

%S 1,1,1,4,3,2,1,7,5,3,11,8,5,2,13,9,5,18,13,8,3,19,13,7,25,18,11,4,25,

%T 17,9,32,23,14,5,31,21,11,1,30,19,8,39,27,15,3,37,24,11,47,33,19,5,44,

%U 29,14,55,39,23,7,51,34,17,63,45,27,9,58,39,20,71,51,31,11,65

%N Number of k such that {k*e} < {n*e}, where { } = fractional part.

%t r = E; p[x_] := FractionalPart[x];

%t u[n_, k_] := If[p[k*r] <= p[n*r], 1, 0]

%t v[n_, k_] := If[p[k*r] > p[n*r], 1, 0]

%t s[n_] := Sum[u[n, k], {k, 1, n}]

%t t[n_] := Sum[v[n, k], {k, 1, n}]

%t Table[s[n], {n, 1, 100}] (* A194750 *)

%t Table[t[n], {n, 1, 100}] (* A194751 *)

%Y Cf. A194751.

%K nonn

%O 1,4

%A _Clark Kimberling_, Sep 02 2011