login
Number of k such that {-k*sqrt(3)} < {-n*sqrt(3)}, where { } = fractional part.
3

%I #5 Mar 30 2012 18:57:44

%S 1,2,3,1,3,5,7,2,5,8,11,3,7,11,1,6,11,16,3,9,15,21,5,12,19,26,7,15,23,

%T 2,11,20,29,5,15,25,35,8,19,30,41,11,23,35,3,16,29,42,7,21,35,49,11,

%U 26,41,1,17,33,49,6,23,40,57,11,29,47,65,16,35,54,3,23,43,63,9

%N Number of k such that {-k*sqrt(3)} < {-n*sqrt(3)}, where { } = fractional part.

%t Remove["Global`*"];

%t r = -Sqrt[3]; p[x_] := FractionalPart[x];

%t u[n_, k_] := If[p[k*r] <= p[n*r], 1, 0]

%t v[n_, k_] := If[p[k*r] > p[n*r], 1, 0]

%t s[n_] := Sum[u[n, k], {k, 1, n}]

%t t[n_] := Sum[v[n, k], {k, 1, n}]

%t Table[s[n], {n, 1, 100}] (* A194740 *)

%t Table[t[n], {n, 1, 100}] (* A194741 *)

%Y Cf. A194741, A194738.

%K nonn

%O 1,2

%A _Clark Kimberling_, Sep 02 2011