login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194471 E.g.f. A(x) satisfies: A(x) = exp(x) + x*A(x)^2. 3

%I

%S 1,2,9,79,1065,19401,445933,12389021,403897553,15120448273,

%T 639345572181,30138682861365,1567316344601593,89137628104427033,

%U 5503952108613407933,366697176991277153341,26220726323043177903009,2002962250253424509250081

%N E.g.f. A(x) satisfies: A(x) = exp(x) + x*A(x)^2.

%C The radius of convergence r of the e.g.f. satisfies: r = exp(-r)/4 = limit (n+1)*a(n)/a(n+1) = 0.203888354702240... with A(r) = 1/(2*r) = 2.452322501352287...

%F E.g.f.: A(x) = (1 - sqrt(1 - 4*x*exp(x))) / (2*x).

%F a(n) = 1 + n*Sum_{k=0..n-1} C(n-1,k)*a(k)*a(n-1-k) for n>=0.

%F a(n) ~ sqrt(2)*sqrt(1+LambertW(1/4))*n^(n-1)/(4*exp(n)*LambertW(1/4)^(n+1)). - _Vaclav Kotesovec_, Aug 19 2013

%F a(n) = n!*sum(k=0..n, (k+1)^(n-k-1)*binomial(2*k,k)/(n-k)!). - _Vladimir Kruchinin_, Sep 01 2014

%e E.g.f.: A(x) = 1 + 2*x + 9*x^2/2! + 79*x^3/3! + 1065*x^4/4! +...

%e Related expansion:

%e A(x)^2 = 1 + 4*x + 26*x^2/2! + 266*x^3/3! + 3880*x^4/4! + 74322*x^5/5! +...

%e Illustrate the recurrence:

%e a(2) = 1 + 2*(1*1*2 + 1*2*1) = 1 + 2*4 = 9;

%e a(3) = 1 + 3*(1*1*9 + 2*2*2 + 1*9*1) = 1 + 3*26 = 79;

%e a(4) = 1 + 4*(1*1*79 + 3*2*9 + 3*9*2 + 1*79*1) = 1 + 4*266 = 1065;

%e a(5) = 1 + 5*(1*1*1065 + 4*2*79 + 6*9*9 + 4*79*2 + 1*1065*1) = 1 + 5*3880 = 19401.

%t f[0] = 1; f[n_] := f[n] = 1 + n*Sum[ Binomial[n - 1, k]*f[k]*f[n - 1 - k] , {k, 0, n - 1}]; Array[f, 18, 0] (* _Robert G. Wilson v_, Aug 25 2011 *)

%o (PARI) {a(n)=n!*polcoeff((1 - sqrt(1 - 4*x*exp(x +O(x^(n+2))))) / (2*x),n)}

%o (PARI) {a(n)=1+n*sum(k=0,n-1,binomial(n-1,k)*a(k)*a(n-1-k))}

%o (Maxima) a(n):=n!*sum((k+1)^(n-k-1)*binomial(2*k,k)/(n-k)!,k,0,n); /* _Vladimir Kruchinin_, Sep 01 2014 */

%K nonn

%O 0,2

%A _Paul D. Hanna_, Aug 24 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 05:01 EST 2021. Contains 349437 sequences. (Running on oeis4.)