login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194376 Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - <k*r>) = 0, where r=sqrt(6) and < > denotes fractional part. 3

%I

%S 2,4,6,8,20,22,24,26,28,40,42,44,46,48,60,62,64,66,68,80,82,84,86,88,

%T 198,200,202,204,206,218,220,222,224,226,238,240,242,244,246,258,260,

%U 262,264,266,278,280,282,284,286,396,398,400

%N Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - <k*r>) = 0, where r=sqrt(6) and < > denotes fractional part.

%C See A194368.

%t r = Sqrt[6]; c = 1/2;

%t x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]

%t y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]

%t t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 500}];

%t Flatten[Position[t1, 1]] (* empty *)

%t t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 400}];

%t Flatten[Position[t2, 1]] (* A194376 *)

%t t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 100}];

%t Flatten[Position[t3, 1]] (* A194377 *)

%Y Cf. A194368, A194377.

%K nonn

%O 1,1

%A _Clark Kimberling_, Aug 23 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 23 17:39 EDT 2021. Contains 345402 sequences. (Running on oeis4.)