%I
%S 0,1,4,8,16,22,24,22,40,40,32,32,56,74,96,50,88,72,32,48,72,104,128,
%T 112,144,144,152,96,152,178,240,122,184,136,32,48,72,108,144,144,184,
%U 188,200,176,272,274,416,250,288,272,216,144,208,292,384,332,376
%N Number of toothpicks or Dtoothpicks added at nth stage to the structure of A194270.
%C Essentially the first differences of A194270.
%H David Applegate, <a href="/A139250/a139250.anim.html">The movie version</a>
%H N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>
%H <a href="/index/To#toothpick">Index entries for sequences related to toothpick sequences</a>
%F a(n) = n^2(n1)^2*(1(1)^n)/8, if 0 <= n <=4.
%F Let b(n) = A194441(n), let c(n) = A194443(n), let d(n) = A010694(n), then:
%F Conjecture: a(n) = 4*(b(n1)d(n)) + 2*(c(n)d(n+1)) + 2*(c(n+2)d(n+1)) + 8, if n >= 3.
%F Conjecture: a(2^k+2) = 32, if k >= 3.
%e Written as a triangle:
%e 0,
%e 1,
%e 4,
%e 8,
%e 16,22,
%e 24,22,40,40,
%e 32,32,56,74,96,50,88,72,
%e 32,48,72,104,128,112,144,144,152,96,152,178,240,122,184,136,
%e 32,48,72,108,144,144,184,188,200,176,272,274,416,250,288,...
%Y Cf. A010694, A129370, A139250, A139251, A172311, A182839, A194270, A194441, A194443, A194445.
%K nonn
%O 0,3
%A _Omar E. Pol_, Aug 23 2011
%E More terms from Omar E. Pol, Sep 01 2011
