login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The consecutive squares of numbers multiplied by their next consecutive integer.
1

%I #26 Sep 08 2022 08:45:58

%S 15,52,125,246,427,680,1017,1450,1991,2652,3445,4382,5475,6736,8177,

%T 9810,11647,13700,15981,18502,21275,24312,27625,31226,35127,39340,

%U 43877,48750,53971,59552,65505,71842,78575,85716,93277,101270,109707,118600

%N The consecutive squares of numbers multiplied by their next consecutive integer.

%H Vincenzo Librandi, <a href="/A193608/b193608.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = (n+2)*(n^2 + (n+1)^2).

%F G.f.: x*(3-x)*(5-x+2*x^2)/(1-x)^4. [_Colin Barker_, Mar 28 2012]

%t Table[2*(n + 1)^3 - n, {n, 38}] (* _L. Edson Jeffery_, Jan 11 2018 *)

%t LinearRecurrence[{4,-6,4,-1},{15,52,125,246},40] (* _Harvey P. Dale_, May 01 2022 *)

%o (C)

%o int a(int n)

%o {

%o return ((n+2)*((n*n)*((n+1)*(n+1))));

%o }

%o (PARI) a(n)=2*n^3+6*n^2+5*n+2 \\ _Charles R Greathouse IV_, Jul 31 2011

%o (Magma) [(n+2)*(n^2 + (n+1)^2): n in [1..40] ]; // _Vincenzo Librandi_, Aug 01 2011

%K nonn,easy

%O 1,1

%A _Ankur Trapasiya_, Jul 31 2011