login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192904 Constant term in the reduction by (x^2->x+1) of the polynomial p(n,x) defined below at Comments. 7

%I

%S 1,0,1,5,16,49,153,480,1505,4717,14784,46337,145233,455200,1426721,

%T 4471733,14015632,43928817,137684905,431542080,1352570689,4239325789,

%U 13287204352,41645725825,130529073953,409113752000,1282274186177

%N Constant term in the reduction by (x^2->x+1) of the polynomial p(n,x) defined below at Comments.

%C The titular polynomial is defined by p(n,x)=(x^2)*p(n-1,x)+x*p(n-2,x), with p(0,x)=1, p(1,x)=x. The resulting sequence typifies a general class which we shall describe here. Suppose that u,v,a,b,c,d,e,f are numbers used to define these polynomials:

%C ...

%C q(x)=x^2

%C s(x)=u*x+v

%C p(0,x)=a, p(1,x)=b*x+c

%C p(n,x)=d*(x^2)*p(n-1,x)+e*x*p(n-2,x)+f.

%C ...

%C We shall assume that u is not 0 and that {d,e} is not {0}. The reduction of p(n,x) by the repeated substitution q(x)->s(x), as defined and described at A192232 and A192744, has the form h(n)+k(n)*x. The numerical sequences h and k are linear recurrence sequences, formally of order 5. The Mathematica program below, with first line deleted, shows initial terms and recurrence coefficients, which imply these properties:

%C (1) the recurrence coefficients depend only on u,v,d,e; the parameters a,b,c,f affect only the initial terms.

%C (2) if e=0 or v=0, the order of recurrence is <=3;

%C (3) if e=0 and v=0, the recurrence coefficients are 1+d*u^2 and -d*u^2 (cf. similar results at A192872).

%C ...

%C Examples:

%C u v a b c d e f... seq h.....seq k

%C 1 1 1 1 1 1 0 0... A001906..A001519

%C 1 1 1 1 0 0 1 0... A103609..A193609

%C 1 1 1 1 0 1 1 0... A192904..A192905

%C 1 1 1 1 1 1 0 0... A001519..A001906

%C 1 1 1 1 1 1 1 0... A192907..A192907

%C 1 1 1 1 1 1 0 1... A192908..A069403

%C 1 1 1 1 1 1 1 1... A192909..A192910

%C The terms of these sequences involve Fibonacci numbers, F(n)=A000045(n); e.g.,

%C A001906: even-indexed F(n)

%C A001519: odd-indexed F(n)

%C A103609: (1,1,1,1,2,2,3,3,5,5,8,8,...)

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,1,1).

%F a(n)=3*a(n-1)+a(n-3)+a(n-4).

%F G.f.: (1-x)*(1-2*x-x^2)/(1-3*x-x^3-x^4). [_Colin Barker_, Aug 31 2012]

%e The first six polynomials and reductions:

%e 1 -> 1

%e x -> x

%e x+x^3 -> 1+3x

%e x^2+x^3+x^5 -> 5+8x

%e x^2+2x^4+x^5+x^7 -> 16+25x

%e x^3+2x^4+3x^6+x^7+x^9 -> 49+79x, so that

%e A192904=(1,0,1,5,16,49,...) and

%e A192905=(0,1,3,8,25,79,...)

%t (* To obtain general results, delete the next line. *)

%t u = 1; v = 1; a = 1; b = 1; c = 0; d = 1; e = 1; f = 0;

%t q = x^2; s = u*x + v; z = 24;

%t p[0, x_] := a; p[1, x_] := b*x + c;

%t p[n_, x_] := d*(x^2)*p[n - 1, x] + e*x*p[n - 2, x] + f;

%t Table[Expand[p[n, x]], {n, 0, 8}]

%t reduce[{p1_, q_, s_, x_}] :=

%t FixedPoint[(s PolynomialQuotient @@ #1 +

%t PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]

%t t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];

%t u0 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]

%t (* A192904 *)

%t u1 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]

%t (* A192905 *)

%t Simplify[FindLinearRecurrence[u0]] (* recurrence for 0-sequence *)

%t Simplify[FindLinearRecurrence[u1]] (* recurrence for 1-sequence *)

%Y Cf. A192232, A192744, A192905, A192872.

%K nonn,easy

%O 0,4

%A _Clark Kimberling_, Jul 12 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 17:46 EST 2016. Contains 278985 sequences.