login
Alternating partial sums of the Floor-Sqrt transform of central binomial coefficients.
0

%I #4 Mar 30 2012 18:55:30

%S 1,0,2,2,6,9,21,37,76,144,285,554,1090,2134,4199,8255,16261,32046,

%T 63217,124786,246490,487170,963381,1906014,3772683,7470564,14798664,

%U 29325472,58131320,115267833,228628345,453594751,900149737,1786749671,3547389573,7044412814,13991569223

%N Alternating partial sums of the Floor-Sqrt transform of central binomial coefficients.

%F a(n) = sum((-1)^(n-k)*floor(sqrt(binomial(2*k,k))),k=0..n).

%t Table[Sum[(-1)^(n-k)Floor[Sqrt[Binomial[2k,k]]],{k,0,n}],{n,0,100}]

%o (Maxima) makelist(sum((-1)^(n-k)*floor(sqrt(binomial(2*k,k))),k,0,n),n,0,24);

%K nonn

%O 0,3

%A _Emanuele Munarini_, Jul 07 2011