login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Binomial convolution of the Floor-Sqrt transform of central binomial coefficients.
0

%I #4 Mar 30 2012 18:55:30

%S 1,2,6,20,72,270,1040,4036,15714,61226,238778,930716,3628520,14143922,

%T 55134174,214941488,838158510,3269630046,12761106790,49834920864,

%U 194743761948,761543265544,2980128724806,11670402459630,45734346816026,179348093549914,703781965002650

%N Binomial convolution of the Floor-Sqrt transform of central binomial coefficients.

%F a(n) = sum(binomial(n,k)*floor(sqrt(binomial(2*k,k)))*floor(sqrt(binomial(2*n-2*k,n-k))),k=0..n).

%t Table[Sum[Binomial[n,k]Floor[Sqrt[Binomial[2k,k]]]Floor[Sqrt[Binomial[2n-2k,n-k]]],{k,0,n}],{n,0,100}]

%o (Maxima) makelist(sum(binomial(n,k)*floor(sqrt(binomial(2*k,k)))*floor(sqrt(binomial(2*n-2*k,n-k))),k,0,n),n,0,24);

%K nonn

%O 0,2

%A _Emanuele Munarini_, Jul 07 2011