%I #8 Jun 07 2019 22:02:01
%S 4,9,23,58,149,385,1000,2605,6799,17766,46457,121537,318044,832417,
%T 2178919,5703874,14931949,39090753,102338336,267921061,701419679,
%U 1836329614,4807555633,12586315393,32951355124,86267692665,225851630135
%N Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x)=1+x^n+x^(2n+2).
%C For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.
%F Conjectures from _Colin Barker_, Jun 07 2019: (Start)
%F G.f.: x*(4 - 7*x - x^2 + x^3) / ((1 - 3*x + x^2)*(1 - x - x^2)).
%F a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3) + a(n-4) for n>4.
%F (End)
%e The first four polynomials p(n,x) and their reductions are as follows:
%e p(1,x)=1+x+x^4 -> 3+4x
%e p(2,x)=1+x^2+x^6 -> 7+9x
%e p(3,x)=1+x^3+x^8 -> 15+23x
%e p(4,x)=1+x^4+x^10 -> 37+58x.
%e From these, read
%e A192472=(3,7,15,37,...) and A192473=(4,9,23,58,...)
%t (See A192472.)
%Y Cf. A192232, A192472.
%K nonn
%O 1,1
%A _Clark Kimberling_, Jul 01 2011