login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192379 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments. 3

%I #10 May 11 2014 11:19:50

%S 1,0,5,8,45,128,505,1680,6089,21120,74909,262680,926485,3258112,

%T 11474865,40382752,142171985,500432640,1761656821,6201182760,

%U 21829269181,76841888640,270495370025,952182350768,3351823875225,11798909226368

%N Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.

%C The polynomial p(n,x) is defined by ((x+d)^n-(x-d)^n)/(2d), where d=sqrt(x+2). For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

%F Conjecture: a(n) = 2*a(n-1)+6*a(n-2)-2*a(n-3)-a(n-4). G.f.: -x*(x^2+2*x-1) / (x^4+2*x^3-6*x^2-2*x+1). - _Colin Barker_, May 11 2014

%e The first five polynomials p(n,x) and their reductions are as follows:

%e p(0,x)=1 -> 1

%e p(1,x)=2x -> 2x

%e p(2,x)=2+x+3x^2 -> 5+4x

%e p(3,x)=8x+4x^2+4x^3 -> 8+20x

%e p(4,x)=4+4x+21x^2+10x^3+5x^4 -> 45+60x.

%e From these, read A192379=(1,0,5,8,45,...) and A192380=(0,2,4,20,60,...).

%t q[x_] := x + 1; d = Sqrt[x + 2];

%t p[n_, x_] := ((x + d)^n - (x - d)^n )/(2 d) (* Cf. A162517 *)

%t Table[Expand[p[n, x]], {n, 1, 6}]

%t reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};

%t t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 1, 30}]

%t Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192379 *)

%t Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192380 *)

%t Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] (* A192381 *)

%Y Cf. A192232, A192380, A192381.

%K nonn

%O 1,3

%A _Clark Kimberling_, Jun 29 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 07:42 EDT 2024. Contains 371905 sequences. (Running on oeis4.)