login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191929 Ordered sums f+4g, where f and g are Lucas numbers (A000032 beginning at 1). 5

%I

%S 5,7,8,11,13,15,16,17,19,20,22,23,27,29,30,31,32,33,34,35,39,41,45,46,

%T 47,48,51,55,57,59,62,63,73,75,76,79,80,83,88,90,91,92,101,104,117,

%U 119,120,123,127,134,135,139,145,148,151,163,167,189,191,192,195

%N Ordered sums f+4g, where f and g are Lucas numbers (A000032 beginning at 1).

%t c = 1; d = 4; f[n_] := LucasL[n];

%t g[n_] := c*f[n]; h[n_] := d*f[n];

%t t[i_, j_] := h[i] + g[j];

%t u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}];

%t v = Union[Flatten[u]] (* A191929 *)

%t t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0]

%t u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}];

%t v1 = Union[Flatten[u1]] (* A191930: c*f(i)-d*f(j) *)

%t g1[n_] := d*f[n]; h1[n_] := c*f[n];

%t t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0]

%t u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}];

%t v2 = Union[Flatten[u2]] (* A191931: d*f(i)-c*f(j) *)

%t v3 = Union[v1, v2] (* A191932 *)

%Y Cf. A000032, A191932, A191931, A191932, A191850.

%K nonn

%O 1,1

%A _Clark Kimberling_, Jun 19 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 03:42 EDT 2021. Contains 347478 sequences. (Running on oeis4.)