login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191850 Ordered sums f+4*g, where f and g are Fibonacci numbers (A000045). 5

%I

%S 5,6,7,9,10,11,12,13,14,15,16,17,20,21,22,23,25,28,29,33,34,35,37,38,

%T 40,41,42,45,46,53,54,55,57,59,60,63,65,66,67,73,75,85,86,87,89,92,93,

%U 97,101,105,107,109,118,121,137,138,139,141,144,148,149,152

%N Ordered sums f+4*g, where f and g are Fibonacci numbers (A000045).

%t c = 1; d = 4; f[n_] := Fibonacci[n];

%t g[n_] := c*f[n]; h[n_] := d*f[n];

%t t[i_, j_] := h[i] + g[j];

%t u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}];

%t v = Union[Flatten[u ]] (* A191850 *)

%t t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0]

%t u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}];

%t v1 = Union[Flatten[u1 ]] (* A191851: f(i)-4*f(j) *)

%t g1[n_] := d*f[n]; h1[n_] := c*f[n];

%t t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0]

%t u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}];

%t v2 = Union[Flatten[u2 ]] (* A191852: 4*f(i)-f(j) *)

%t v3 = Union[v1, v2] (* A191853 *)

%Y Cf. A191851, A191852, A191853.

%K nonn

%O 1,1

%A _Clark Kimberling_, Jun 17 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 13 19:30 EDT 2020. Contains 336451 sequences. (Running on oeis4.)