%I #19 Sep 08 2018 21:55:51
%S 1,2,1,2,1,3,2,2,4,3,2,3,2,3,2,1,2,1,2,1,1,2,1,2,1,1,2,1,2,1,1,2,1,2,
%T 1,3,4,3,4,3,2,3,2,3,2,2,3,2,3,2,3,4,3,4,3,5,4,4,6,5,4,5,4,5,4,3,4,3,
%U 4,3,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,5,6,5,6,5,4,5,4,5,4,4,5,4,5,4,2,3,2,3,2
%N Number of e's in the English name of the nth odd number.
%C Every odd number has the letter e in its English name, so a(n) can never be 0.
%H Nathaniel Johnston, <a href="/A191784/b191784.txt">Table of n, a(n) for n = 1..5000</a>
%e a(5) = 1, because the 5th odd number is "nine", which contains one "e".
%p units:=[1,0,2,0,1,0,2,1,1,1,3,2,2,2,2,2,4,3,3]:tens:=[0,0,1,0,0,0,0,2,1,1]: A191784 := proc(n) global tens,units: if(n<=10)then return units[2*n1]: elif(n<=50)then return units[2*((n1) mod 5) + 1] + tens[floor((n1)/5)+1]: elif(n<=500)then return 1+units[floor((n1)/50)]+procname(((n1) mod 50) + 1): fi: return units[floor((n1)/500)]+procname(((n1) mod 500) + 1): end: seq(A191784(n),n=1..105); # valid up to n=5000, _Nathaniel Johnston_, Jun 26 2011
%Y Cf. A085513.
%K dumb,easy,nonn,word
%O 1,2
%A _Kausthub Gudipati_, Jun 25 2011
