login
Dispersion of A047202, (numbers >1 and congruent to 0, 2, 3, or 4 mod 5), by antidiagonals.
10

%I #10 Jun 04 2022 22:04:24

%S 1,2,6,3,8,11,4,10,14,16,5,13,18,20,21,7,17,23,25,27,26,9,22,29,32,34,

%T 33,31,12,28,37,40,43,42,39,36,15,35,47,50,54,53,49,45,41,19,44,59,63,

%U 68,67,62,57,52,46,24,55,74,79,85,84,78,72,65,58,51,30

%N Dispersion of A047202, (numbers >1 and congruent to 0, 2, 3, or 4 mod 5), by antidiagonals.

%C For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.

%C ...

%C Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:

%C ...

%C A191702=dispersion of A008587 (5k, k>=1)

%C A191703=dispersion of A016861 (5k+1, k>=1)

%C A191704=dispersion of A016873 (5k+2, k>=0)

%C A191705=dispersion of A016885 (5k+3, k>=0)

%C A191706=dispersion of A016897 (5k+4, k>=0)

%C A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)

%C A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)

%C A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)

%C A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)

%C A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)

%C ...

%C EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):

%C A191702 has 1st col A047201, all else A008587

%C A191703 has 1st col A047202, all else A016861

%C A191704 has 1st col A047207, all else A016873

%C A191705 has 1st col A032763, all else A016885

%C A191706 has 1st col A001068, all else A016897

%C A191707 has 1st col A008587, all else A047201

%C A191708 has 1st col A042968, all else A047203

%C A191709 has 1st col A042968, all else A047207

%C A191710 has 1st col A042968, all else A032763

%C A191711 has 1st col A042968, all else A001068

%C ...

%C Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):

%C ...

%C If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by

%C a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

%H Ivan Neretin, <a href="/A191708/b191708.txt">Table of n, a(n) for n = 1..5050</a> (first 100 antidiagonals, flattened)

%e Northwest corner:

%e 1....2....3....4....5

%e 6....8....10...13...17

%e 11...14...18...23...29

%e 16...20...25...32...40

%e 21...27...34...43...54

%e 26...33...42...53...67

%t (* Program generates the dispersion array T of the increasing sequence f[n] *)

%t r = 40; r1 = 12; c = 40; c1 = 12;

%t a=2; b=3; c2=4; d=5; m[n_]:=If[Mod[n,4]==0,1,0];

%t f[n_]:=a*m[n+3]+b*m[n+2]+c2*m[n+1]+d*m[n]+5*Floor[(n-1)/4]

%t Table[f[n], {n, 1, 30}] (* A047202 *)

%t mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]

%t rows = {NestList[f, 1, c]};

%t Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];

%t t[i_, j_] := rows[[i, j]];

%t TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191708 *)

%t Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191708 *)

%Y Cf. A047202, A016861, A191703, A191426.

%K nonn,tabl

%O 1,2

%A _Clark Kimberling_, Jun 12 2011